The KNIME Image Processing Extension

User Manual (DRAFT)

Christian Dietz and Martin Horn

February 6, 2014

[image: image1.jpg]

1

Contents

	1
	Introduction
	3

	
	1.1
	Installation .
	3

	2
	Basic Concepts
	4

	
	2.1
	Image Concepts .
	5

	
	2.2
	KNIME Concepts .
	7

	
	
	2.2.1
	Data Tables and Data Types
	7

	
	
	2.2.2
	Node Views .
	9

	
	
	2.2.3
	Hiliting .
	9

	
	
	2.2.4
	Loops .
	11

· Important Nodes and Basic Work ows for Image Processing 11 3.1 Image I/O Nodes . 11

	3.2
	Image Pre-processing Nodes
	12

	3.3
	Image Processing Nodes .
	12

	3.4
	Image Dimension-Handling Nodes
	12

	3.5
	Image Metadata-Handling Nodes
	13

	3.6
	Segmentation Nodes .
	13

	3.7
	Segment and Feature-Calculation Nodes
	13

	3.8
	GroupBy .
	14

	3.9
	Basic Segmentation Work ow Example
	16

	4 Resources
	16

2

· Introduction

The KNIME Image Processing Extension adds new image types and functions to process and analyze images to KNIME. The corresponding nodes allow one to read more than 100 di erent kinds of images (thanks to the Bio-Formats API1), to apply well known methods for the preprocessing and to perform image segmentation. Most of the included nodes operate on multi-dimensional image data (e.g. videos, 3D images, multi-channel images or even a combination of them), which is made possible by the internally used ImgLib2-API2.

Further details and news regarding the KNIME Image Processing Exten-sion can be found at http://tech.knime.org/community/image-processing. This manual is targeted to users that are already familiar with KNIME

and want to learn the usage of the KNIME Image Processing Extension. If you are not familiar with the basic principles of KNIME we highly recommend to get started with the KNIME basics rst, e.g. by reading http://tech. knime.org/getting-started.

1.1
Installation

The KNIME Image Processing Extension is part of the community contribu-tions3. The Community Contributions o er a wide range of KNIME nodes from di erent application areas, such as chemo- and bioinformatics, image processing, or information retrieval. In contrast to the extensions available via the standard KNIME Update Site they are provided and maintained by various community developers.

To install KNIME and the KNIME Image Processing extension just follow the listed steps:

Download and un-pack KNIME from http://www.knime.org/downloads, run it by using the respective executable in the KNIME directory (e.g. knime.exe)

Install the KNIME Image Processing Extension: File > Install KNIME Extension... > KNIME Community Contributions - Imaging; check

[image: image2.jpg]Available Software
Check the items that you wish to install.

@
Name Version
> [60 KNIME & Extensions
> (1 0 KNIME Community Contributions - Bioinformatics & NGS
» (1 80 KNIME Community Contributions - Cheminformatics
¥ @ i KNIME Community Contributions - Imaging
& & KNIME Image Processing 1.1.1.201401112008
§ KNIME Image Processing - OMERO Integration 0.8.1.201401101004
» (1 6 KNIME Community Contributions - Other
> [80 KNIME Community Contributions Sources
» L 0 KNIME Labs Extensions
> (1 0 KNIME Node Development Tools
» L 8 Marvin Chemistry Extensions (donated bv Infocom & Chemaxon)
| selectAll || Deselectall | 1itemselected
Details
KNIME Image Processing Types and Nodes
More...
& Show only the latest versions of available software [Hideitems that are already installed
B Group items by category What s already installed?

] show only software applicable to target environment

oo NG x| o

1http://loci.wisc.edu/software/bio-formats
2http://imglib2.net/
3http://tech.knime.org/community
3

[image: image3.jpg]v & Community Nodes
v & KNIME Image Processing

> &0

» & Image

> & Labeling

» & Features

> & Views

» & Tracking

Figure 1: Installation of the KNIME Image Processing Extension (File > Install KNIME Extension...).

KNIME Image Processing and follow through the next steps (see Figure 1)
The KNIME Image Processing nodes can now be found in the Node Repository in the Community Nodes > KNIME Image Processing cat-egory, see Figure 2
From time to time new versions of KNIME extensions will be published that can be retrieved by: File > Update KNIME ...

· Basic Concepts

The following sections explain basic concepts and philosophies of how to deal with image sets within KNIME.

4

[image: image4.jpg]Spec - Columns: 3 | Properties | Flow Variables

Table *default’ - Rows: 10

Row ID 1§ Image Seo Labeling |1 Image_Metadata
imagel -
name=img_BYTETYPE_net.imglib2.img.array.
sourc

dimensions=100,100,10,1 (x.Y.Z,Channel):
min=0,0,0,0;

lpixel type=ByteType)]

imagel

name=img_BYTETVPE net.imglib2.img.array. /|
source=

dimensions=100,100,10,1 (x.Y.Z,Channel)
min=0,0.0,0;

ipivel type=ByteType)]

imager

img_BYTETYPE_net.imglib2.img.array.

Figure 2: The KNIME Image Processing category in the Node Repository.

2.1
Image Concepts

Images in KNIME are n-dimensional objects. Mathematically its a mapping from the n-dimensional Euclidean space to single values, i.e. I : Rn 7!R. The

n

vector ~x 2 R is essentially the pixel coordinate and I(~x) its corresponding pixel value, e.g. I(101; 40) = 50 in a 2-dimensional image.

Colored images therewith contain an additional dimension representing the color information, usually called channels (e.g. RGB-channels). A two-dimensional colored image is consequently a 3-dimensional image object. Hence, the green-component of a pixel at position (x; y), for instance, is I(x; y; 1) = : : : . If we now consider a colored video we obtain a 4-dimensional object, where two dimensions represent the spatial coordinates x; y, another the time t and a forth the color information c.

Internally, these n-dimensional image objects are represented by data structures provided by the ImgLib2 library4. The data structures support di erent, so called, pixel types de ning the domain of values a pixel can receive. The available numeric pixel types are

BitType (f0; 1g)

ByteType (f 128; :::; 127g)

UnsignedByteType (f0; :::; 255g) Unsigned12BitType (f0; :::; 4096g) ShortType (f 32768; :::; 32767g)

UnsignedShortType (f0; :::; 65535g)

[image: image5.jpg]Di

0:334

Image Normalizer

(Gptions | Column Seisdlion | RO1 Options | Flow Variabiss | Memory Paiicy
Creation Mods
Column Creation Mode [New Table [+
[Tabie
Column suffix
Colum suffix [Replace
Exluds Seled ncuds
Columne): Search [add>> | | Coumne: [Search
CSelect all search hits T | Oselectatisearchnits
add > timg

oK.

Apply

| cancel

4http://imglib2.net/
5

IntType (f 231; :::; 231
1g)

UnsignedIntType (f0; :::; 232 1g)

LongType (f 263; :::; 263
1g)

FloatType (oating point number with 32-bit single precision) DoubleType (oating point number with 64-bit single precision)

Another important aspect of the internal image representation is the so called image factory. It determines how the image is explicitly stored in the computers memory. The most important factories are

ArrayImgFactory - the pixel values are stored in one linear array

PlanarImgFactory - each two-dimensional plane is stored in its own array

CellImgFactory - the whole image is divided into equally sized cells, each stored in its own array

Usually the factory of an image can remain untouched, except the number of pixels of an image exceeds the number of available positive integer numbers (231 1 = 2147483647). The consequence is that, if the pixels are stored in a single array, they cannot be addressed anymore by an integer number (a limitation of the Java programming language). Then the use of the Pla-narImgFactory or CellImgFactory inevitably.

Images of di erent pixel types and factories can be converted into each other (possibly with information loss) by using the Converter-node (see Sec-tion 3).

Beside images there are also objects called labelings that essentially repre-sent segmentations, i.e. partitions of images into segments. Similar to images they can have multiple dimensions and only di er in a way that each pixel position is associated with an arbitrary label (normally a string) instead of a numeric value. This enables one to assign a common label (name, class, etc.) to a group of pixels for identi cation and discrimination from other pixels. A labeling is the usual outcome of a segmentation algorithm (e.g. Connected Component Analysis-node) and can be subsequently used to calculate fea-tures on the segments (measurements), lter segments and much more (see Section 3).

6

2.2
KNIME Concepts

This section discusses important KNIME concepts and how they can be used in conjunction with the analysis of image data sets.

2.2.1
Data Tables and Data Types

Data tables are the entities that are usually transferred between the input-and output-ports of two nodes. A table consist of rows and column whereas a column is de ned by a certain data type (e.g. StringValue, DoubleValue, etc.) representing numbers, text and other kind of data. To inspect the table of an output port of a certain node it can be opened in a separate frame via the node’s context menu.

Two important types that come with the Image Processing Extension are ImgPlusValue and LabelingValue. They wrap an n-dimensional image or la-beling, respectively. If a table column is, for instance, of type ImgPlusValue, then all corresponding cells of that column are essentially images. These im-ages do not have to be of the same type, dimension etc. In the table view of an according output port only the rst plane (actually a smaller thumbnail) of the possibly multidimensional image/labeling will be rendered. Beside this a string representation is available, too, that helps to have a glance at the metadata of an image or labeling. It can be shown by a right mouse-click on the respective column header in the table view. A table containing an image and labeling column are shown in Figure 3.
Now, the nodes (e.g. Inverter, Global Thresholder, ...) that apply a certain algorithm on single images either generate a completely new data table, replace the selected column, or append the results as a new column. For a particular node this behaviour can be speci ed in the con guration dialog in the tab Column Selection (see Figure 4).

Nodes, that need multiple images or labelings as inputs (e.g. the Image Calculator-node) do not have multiple input ports (as one may suspect), but multiple columns at one input port that will be individually selected in the con guration dialog. This explicitly makes clear what objects (e.g. image and labeling) belong to each other. If images or labelings of di erent work ow branches need to be processed by a node with multiple input objects, they have to be joined into one table rst using the Joiner-node.

7

[image: image6.jpg]Table Cell View - 0:340 - Inverter

“image Viewer | Transfer Function
| Image Info

X[50/100]; Y[53/100]; Z[1/10]; Channel[1/1]; value=38
>t.imglib2.img. array. ArraylmgFactory 2d0f398d

image

Histogram

Normalize

inimap Plane selection
N[l

x

Y
2Z[IL

Channel

Saturat

[use calibration

Normalize
ion (96):

type=ByteType

Figure 3: A KNIME table containing two image columns and a labeling column. The second image column (Image Metadata) is rendered with a di erent renderer (can be selected by right-clicking on the according table header).

8

[image: image7.jpg]|m::ei|u> ler

Image Writer

-

[caa)
Image Generator

(-

image File Linker

il

Image Importer

i

Figure 4: The column selection tab available in many dialogs of the image processing nodes, mostly nodes that apply a certain algorithm on an one image or labeling.

2.2.2
Node Views

Some nodes provide a so called node view, a separate window visualizing the information at the respective output port in certain ways. It can be opened via the context menu of each node, if available.

Most of the nodes of the Image Processing Extension provide a speci c view, called the Table Cell View. In contrast to the usual table view, that each node provides, the Table Cell View allows a more detailed look into objects of a table cell. This is especially useful if the according object can’t be entirely visualized in a simple 2D representation, as it applies to multi-dimensional images or labelings (e.g. 3D stacks, videos, etc.). After the Table Cell View has been opened, just click on the desired table cell (on the left) in order to open the associated table cell views. In the case of images and labelings, these table cell views allow one to scroll through the available dimensions of an image/labeling, zoom in and out, determining the pixel intensities (or labels in a labeling) at certain pixel positions (by hovering over the image), depict the image’s histogram, etc. The table cell view is exemplary depicted in Figure 5.
2.2.3
Hiliting

The KNIME Hiliting mechanism.

9

[image: image8.jpg]Image Converter

g

Image Normalizer

>

Image Resizer

i

Figure 5: The Table Cell View to inspect data cells in more detail. Provided by most of the image processing nodes.

10

2.2.4
Loops

E.g. (Parallel) Chunk Loops

· Important Nodes and Basic Work ows for Image Processing

In this section we introduce a selection of nodes (not essentially part of the Image Processing Extension) that we consider as important for many image analysis tasks. To provide a compact overview we only explain what the nodes generally intended to do and refer to the node description of the according nodes for more details, like the nodes settings, etc.

3.1
Image I/O Nodes

Usually the rst node in an image analysis work ow is the Image Reader. Thanks to the Bioformats library it supports more than a hundred formats. The result is a table containing one column with all images that have been read. The images to be read can either be selected via the node’s con guration dialog or by providing a list of le locations in a table connected to the optional input port (or both). For instance, the List Files-node (a standard KNIME node) is able to create those le lists.

[image: image9.jpg]Projector

2

Image Cropper

splitter

]

@ofig

Dimension Swapper

@8

Alternatively, images les can rst be just referenced by using the Image File Linker what is much faster and doesn’t require to convert all images rst into the KNIME internal rep-resentation. The image are then only read on demand, e.g. as soon as they are displayed in a table or view, or if subsequent nodes request them. To explicitly import the referenced images, the Image Importer node can be used. The main use case of the Image File Linker is to save hard disc memory when processing a lot of images in loops (see the KNIME loops in Section 2.2).

To generate random images (e.g. for testing or learning) the Image Gen-erate allows one to generate images of arbitrary dimensions, pixel types etc, either manually speci ed or randomly generated within given ranges.

11

3.2
Image Pre-processing Nodes

Important nodes to prepare the image data for further process-ing are the Image Normalizer, Image Converter, and sometimes the Inverter.

[image: image10.jpg]Image Segment
Features

i

Segment Features.

4

Segment Cropper

iE

It is often the case that the pixel values of images doesn’t utilize the whole possible range (e.g. the maximum pixel value is

500 of maximal 65535 possible in case of an UnsignedShortType pixel type). The image rendered in the table or the Table Cell View will appear almost black. Only the normalization of the image to spread the pixel values over the whole domain by using the Image Normalizer will make them visible.

Furthermore for many use cases it’s unnecessary to keep the pixel values as ShortTypes and converting them to another type will not harm (that is especially the case when the aim is image segmentation). It reduces the amount of hard disc memory to keep the intermediate results. The Image Converter-node can convert between all available pixels types such that the pixel values are either just copied, scaled, or normalized and scaled.

TODO image resizer

3.3
Image Processing Nodes

Image Calculator, Global/Local Thresholder, Filter nodes (Convolver etc.), Morphological Operations, ...

3.4
Image Dimension-Handling Nodes

Important nodes that manipulate the number of image dimen-sions are, among others, the Projector, Image Cropper, Splitter, Merger, and Dimension Swapper-node.

[image: image11.jpg]GroupBy

@

The Projector-node reduces the number of image dimensions exactly by one. The pixel in the direction of the dimension to be removed can be subsumed in di erent ways. Available pro-jection methods are taking the average, maximum, minimum, median, or the standard deviation.

Another way to reduce the number of dimensions of an image is to cut a sub-image out of it (e.g. taking only the rst channel of an RGB-image), as done by the Image Cropper. But this

12

node does not necessarily reduce the number of dimensions and operations, like taking the rst ten time-points out of hundred in a video is possible, too.

The Splitter-node orthogonally splits the images into sub-images that are appended as additional columns. With its help, for instance, a video, rgb-image or 3D image object can be split in to its 2D-planes, e.g. to process them individually. But the node is not limited to split the image objects into its xy-planes and other splitting directions are possible, too.

Apparently the Merger-node o ers the opposite operation and puts im-ages of di erent columns in a row together to create one bigger image objects (possibly, but not necessarily, with more dimensions).

Use the Dimension Swapper to change the order of the dimensions. The Dimension Cleaner removes needles dimensions that have the size of

1, whereas the Dimension Extender adds another dimension of size 1 with a speci ed label (the dimension size can than be increased with the help of the Image Resizer).

3.5
Image Metadata-Handling Nodes

Image Properties, Image Features, Labeling Properties, ...

3.6
Segmentation Nodes

Connected Component Analysis, Voronoi Segmentation, Labeling Filter, ...

3.7
Segment and Feature-Calculation Nodes

All subsequently described nodes essentially require a labeling as determined with the nodes introduced in the previous Sec-tion 3.6. Based on that they all produce a data table where basically each row corresponds to exactly one segment in the original labelings. The outcome of the nodes di er in terms of the segment-information they contain. The Segment Crop-per-node just extracts either the bitmask of the segments, or, if an additional image column is provided, the image patch un-derneath the according segment. The Segment Feature- and Image Segment Feature-node in turn additionally allow one to

[image: image12.jpg]Table "default’ - Rows: 15694 | Spec - Columns: 163 | Properties | Flow Variables
Row ID § Label [Se Source Labeling | D ASM |...| D Contr... | D Correl...| D Varian.
168-04.0me.tif#. 13 L - osss |74.766
T

calculate certain characteristics (called features, a vector of discriminative

13

numbers) for each segment individually. The Segment Features-nodes uses the labeling information exclusively, the Image Segment Features-node de-termines the features for a segment using the underlying images (hence, an additional image column is required).

Bitmasks or image patches associated with an segment of a source la-beling are again images with certain dimensions (depending on the labeling they where extracted from) and pixel type (a bitmask is of type BitType). Furthermore, especially important for a re-composition of bitmasks or images patches to new labelings or images (see next Section 3.8 for more details), each image has an o set/minimum. It is the position that the upper left corner used to have in the original image. ’Normal’ images, as those read in with the Image Reader-node, usually have an o set of 0 in each dimension.

The segment tables with the bitmasks and features can consequently be used be ltered and re-composed to labeling or images again (see next Section 3.8), or, for instance, to perform data mining (e.g. classi cation, clustering, etc.).

The Figure 6 exemplary shows a segment table with the segment bitmask, the reference to the source labeling and some features.

3.8
GroupBy

Quite useful, especially when dealing with segmentations (la-belings) and segment tables, is the KNIME standard GroupBy-node. Among other aggregation methods for numbers (e.g. mean etc.), string, etc. it also provides a couple of operations to compose images or labeling from a set of images (i.e. a group). As soon as ones adds an image column (e.g. the bitmask col-

umn of a segment table, or the image column of the Image Reader) in the Aggregation settings of the GroupBy-node di erent possibilities are avail-able to combine the images of one group (the groups are de ned in the group settings):

Min/Max/Mean Image The minimum, maximum, or average value of each pixel is taken. Note that the input images of one group must have the same dimensions.

Compose Image The images are placed within a bigger image at the position determined by its minimum/o set (image metadata). If no

14

Figure 6: A segment table as produced by the Image Segment Feature-node, with the segment bitmask, the label, the reference to the originating labeling, and some feature values.

15

o set (i.e. the o set is 0 for all dimension) is set, this operations doesn’t make much sense. To set the o set of an image the Set Image Metadata can be used. If images are overlapping, then the pixels are overwritten (i.e. the pixel values of the last image a set at the overlapping regions).

Compose Labeling Similar to the ’Compose Image’ operation where all images (actually bitmasks) of a group are composed to a labeling according to the speci ed o set. It is a usual way to re-create a labeling out of a segment table. If two images overlap, either the labels of both images are set (each pixel of a labeling is associated with a list of labels) or the image with a higher value with respect to a speci ed number-column is chosen. Please note that in this case the images must be binary images (i.e. BitType, like the bitmasks in a segment table).

3.9
Basic Segmentation Work ow Example

Here we (are going to) brie y demonstrate the most basic segmentation work-ow you can think of, including the basic calculation of segment features (i.e. generating a segment table) and the re-composition of the segment table into a labeling after ltering. The involved nodes are Image Reader, Global Thresholding, Connected Component Analysis, Segment Features, Groupby and the Interactive Segmentation View.

· Resources

Contact: Christian Dietz (dietzc85@googlemail.com), Martin Horn (horn martin@gmx.de)

Website: http://tech.knime.org/community/image-processing
Forum: http://tech.knime.org/forum/knime-image-processing
Source code: https://github.com/knime-ip/knip
16

